
Calculus 2
Final Exam – Solutions
Exam Date: April 11, 2022 (16:00 – 18:00)

1) Consider the hyperboloid of one sheet H given by the equation

x2 +
y2

9
− z2

4
= 2

8 a) Treating H as a level surface of a function of three variables, find an equation of the tangent plane
to H at the point P (3, 9, 8).

8 b) Use the Implicit Function Theorem to show that near the point P in part a), H can be considered
to be the graph of a function f of x and z. Compute the partial derivatives fx and fz and show
that the tangent plane found in a) coincides with the graph of the linearization L(x, z) of f(x, z)
at (3, 8).

8 c) Use the method of Lagrange multipliers to find the point Q(x∗, y∗, z∗) on the tangent plane in part
a) that is closest to the origin. Determine the distance of between the tangent plane and the origin.

Solution. a) The hyperboloid H can be viewed as a level surface for the function F (x, y, z) = x2+ y2

9
− z2

4
.

To obtain a normal vector to the tangent plane we may use the fact that the gradient vector is perpendicular
to level surfaces. The gradient vector of F (x, y, z) is

∇F (x, y, z) = Fx~ı+ Fy ~+ Fz ~k = 2x~ı+ 2
9
y ~− 1

2
z ~k

which at the point (3, 9, 8) becomes

~n = ∇F (3, 9, 8) = 2(3)~ı+ 2
9
(9)~− 1

2
(8)~k = 6~ı+ 2~− 4~k.

For any point Q(x, y, z) in the tangent plane, the vector
−→
PQ = (x − 3)~ı + (y − 9)~ + (z − 8)~k lies in

the plane and as such it is perpendicular to ~n, i.e. we have

~n ·
−→
PQ = 0 ⇔ 6(x− 3) + 2(y − 9)− 4(z − 8) = 0 ⇔ 6x+ 2y − 4z − 4 = 0.

Therefore 3x+ y − 2z − 2 = 0 is an equation for the tangent plane to H at (3, 9, 8).
b) Since F (x, y, z) is a polynomial function of x, y, z, its partial derivatives are continuous. Further-

more, we have F (3, 9, 8) = 2 and Fy(3, 9, 8) = 2
9
y|y=9 = 2 6= 0. By the Implicit Function Theorem,

there is a neighbourhood of (3, 9, 8) in which a unique function y = f(x, z) is defined and satisfies
F (x, f(x, z), z) = 2. The partial derivatives of f are found via implicit differentiation

fx = −
Fx
Fy

= −2x
2
9
y
= −9x

y
, fz = −

Fz
Fy

= −
−1

2
z

2
9
y

=
9z

4y

taking the following values at (3, 9, 8):

fx(3, 8) = −
9(3)

9
= −3, fz(3, 8) =

9(8)

4(9)
= 2.

Hence the linearization of y = f(x, z) at (3, 8) is

L(x, z) = fx(3, 8)(x− 3) + fz(3, 8)(z − 8) + f(3, 8)

= −3(x− 3) + 2(z − 8) + 9

= −3x+ 2z + 2.
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The graph of the linearization is given by the equation y = −3x+2z+2 which coincides with the equation
of the tangent plane found in part a).

c) To find the point Q(x∗, y∗, z∗) is to minimize the distance from the origin which is equivalent to
minimizing the function d(x, y, z) = x2 + y2 + z2 (i.e. distance from the origin squared) subject to the
constraint g(x, y, z) = 3x+ y − 2z = 2. We use the method of Lagrange multipliers and solve

{
∇d(x, y, z) = λ∇g(x, y, z)
g(x, y, z) = 2

⇔


2x = 3λ

2y = λ

2z = −2λ
3x+ y − 2z = 2

for x, y, z, λ. From the first three equations we get x = 3
2
λ, y = 1

2
λ, z = −λ, which plugged into

the last equation yields 7λ = 2, hence λ = 2
7
. Therefore we find the coordinates of the point Q to be

x∗ =
3
2
(2
7
) = 3

7
, y∗ =

1
2
(2
7
) = 1

7
, z∗ = −2

7
, i.e. Q(x∗, y∗, z∗) = (3

7
, 1
7
,−2

7
). Its distance from the origin is

D = |OQ| =
√
d(x∗, y∗, z∗) =

1

7

√
32 + 12 + (−2)2 =

√
14

7
=

√
2

7
.

Alternatively, this distance can be found computing the length of the projection of the vector
−→
OP to ~n:

D =
|~n ·
−→
OP |
|~n|

=
|6(3) + 2(9)− 4(8)|√

62 + 22 + (−4)2
=

4√
56

=
2√
14

=

√
2

7
.

2) Consider the vector field

~G(x, y, z) =
Ax

x2 + y2 + 1
~ı+

(
2y

x2 + y2 + 1
+Bzey

)
~+ ey ~k

with parameters A,B ∈ R.

9 a) Determine the values of A and B for which ~G is conservative.

8 b) For A and B found in part a), determine a scalar potential for ~G.

4 c) For A and B found in part a), compute the line integral of ~G along the curve of intersection of the
paraboloid z = x2 + y2 and the plane y = 1 from the point P0(0, 1, 1) to the point P1(1, 1, 2).

Solution. a) Since ~G is defined everywhere on R3 and has continuously differentiable components, it is
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conservative if and only if curl ~G = ~0. We have

curl ~G = ∇× ~G =

∣∣∣∣∣∣∣∣∣∣∣∣

~ı ~ ~k

∂

∂x

∂

∂y

∂

∂z

Ax

x2 + y2 + 1

2y

x2 + y2 + 1
+Bzey ey

∣∣∣∣∣∣∣∣∣∣∣∣
=

[
∂

∂y
(ey)− ∂

∂z

(
2y

x2 + y2 + 1
+Bzey

)]
~ı

+

[
∂

∂z

(
Ax

x2 + y2 + 1

)
− ∂

∂x
(ey)

]
~

+

[
∂

∂x

(
2y

x2 + y2 + 1
+Bzey

)
− ∂

∂y

(
Ax

x2 + y2 + 1

)]
~k

= [ey −Bey] ~ı+ [0− 0] ~+

[
−4xy

(x2 + y2 + 1)2
− −2Axy

(x2 + y2 + 1)2

]
~k

=ey [1−B] ~ı+
−2xy

(x2 + y2 + 1)2
[2− A] ~k

so curl ~G = ~0 everywhere if and only if A = 2 and B = 1:

~G(x, y, z) =
2x

x2 + y2 + 1
~ı+

(
2y

x2 + y2 + 1
+ zey

)
~+ ey ~k.

b) We need to solve the equation ∇g = ~G with A = 2, B = 1 for g. Written in component form, it
reads

gx =
2x

x2 + y2 + 1
, (1)

gy =
2y

x2 + y2 + 1
+ zey, (2)

gz = ey. (3)

Integrating both sides of eq. (1) with respect to x, we obtain

g(x, y, z) = ln(x2 + y2 + 1) + h(y, z), (4)

where h(y, z) is a constant of integration depending on y and z (but not x). Differentiating (4) with
respect to y, we get

gy =
2y

x2 + y2 + 1
+ hy(y, z) (5)

Comparing eqs. (2) and (5) gives
hy(y, z) = zey (6)

which integrated with respect to y yields

h(y, z) = zey + k(z). (7)

Again, we have constant of integration k(z) that may depend on z (but not y). Plugging this into eq.
(4) gives us

g(x, y, z) = ln(x2 + y2 + 1) + zey + k(z). (8)
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Differentiating (8) with respect to z and comparing the result to (3) yields

k′(z) = 0 ⇒ k(z) = K (constant). (9)

Therefore we find that
g(x, y, z) = ln(x2 + y2 + 1) + zey +K (10)

is a potential of the conservative vector field ~G (with A = 2, B = 1).

c) Since ~G (with A = 2, B = 1) is conservative, i.e. we have ~G(x, y, z) = ∇g(x, y, z) with the
potential g(x, y, z) = ln(x2 + y2 + 1) + zey +K we have∫

P0→P1

~G · d~r = g(P1)− g(P0) = g(1, 1, 2)− g(0, 1, 1) = (ln 3 + 2e)− (ln 2 + e) = e+ ln 3− ln 2

by the Fundamental Theorem of line integrals.
Alternatively, we could parametrize the curve in question by the vector function

~r(x) = x~ı+ ~+ (x2 + 1)~k, 0 ≤ x ≤ 1

whose derivative is
~r ′(x) =~ı+ 2x~k, 0 ≤ x ≤ 1

and along which the vector fields takes the values

~G(~r(x)) =
2x

x2 + 2
~ı+

(
2

x2 + 2
+ (x2 + 1)e

)
~+ e~k.

Hence the line integral can also be directly evaluated as follows∫
P0→P1

~G·d~r =
∫ 1

0

~G(~r(x))·~r ′(x) dx =

∫ 1

0

(
2x

x2 + 2
+ 2xe

)
dx =

[
ln(x2 + 2) + x2e

]x=1

x=0
= ln 3+e−ln 2.

3) Consider a fluid with the velocity field

~V (x, y, z) =
−y√
x2 + y2

~ı+
x√

x2 + y2
~+ (x2 + y2) z ~k

and the surface S = {(x, y, z) ∈ R3 | x2 + y2 = 1, −y − 3 ≤ z ≤ y + 3} with outward normal vectors
and positively-oriented boundary ∂S.

3 a) Describe and sketch the surface S and its boundary ∂S (draw orientation).

Verify Stokes’ Theorem by

8 b) calculating the circulation of ~V along ∂S, i.e.
∫
∂S
~V · d~r and

12 c) computing the flux of curl ~V across S, that is
∫∫

S
curl ~V · d~S.

Solution. a) The surface S is the part of the cylinder of radius 1 with the z-axis as axis that is above
the plane y+ z+3 = 0 and below the plane y− z+3 = 0. The boundary ∂S consists of the two ellipses
C1 and C2 obtained by slicing the cylinder with each of the planes (see Figure 1):

C1 = {(x, y, z) | x2 + y2 = 1, z = y + 3}, C2 = {(x, y, z) | x2 + y2 = 1, z = −y − 3}.

These ellipses can be thought of as the projection of the unit circle x2+ y2 = 1 onto the planes z = y+3
and z = −y−3, respectively. Since the normal vectors point outward (meaning away from the z-axis), the
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y

z

C1

C2

S

y

z

C1

C2

S normal vectors

x

Figure 1: The surface S and its boundary ∂S = C1 ∪ C2 (with positive orientation).

boundary becomes positively-oriented if the upper ellipse C1 is traversed clockwise and the lower ellipse
C2 is traversed counter-clockwise when viewed from above.

b) Based on part a), the following vector functions can be used to represent the (oriented) boundary
∂S = C1 ∪ C2:

C1 : ~r1(t) = cos t~ı− sin t~+ (3− sin t)~k, 0 ≤ t ≤ 2π,

C2 : ~r2(t) = cos t~ı+ sin t~− (3 + sin t)~k, 0 ≤ t ≤ 2π.

The circulation of ~V along the boundary ∂S = C1 ∪ C2 is the sum of the line integrals of ~V along the
two ellipses C1 and C2: ∫

∂S

~V · d~r =
∮
C1

~V · d~r +
∮
C2

~V · d~r.

To compute these line integrals, we need the tangent vectors as well as the values ~V takes along the
curves. Along C1, we obtain

~r1
′(t) = − sin t~ı− cos t~− cos t~k

and

~V (~r1(t)) =
−(− sin t)√

(cos t)2 + (− sin t)2
~ı+

cos t√
(cos t)2 + (− sin t)2

~+
(
(cos t)2 + (− sin t)2

)
(3− sin t)~k

= sin t~ı+ cos t~+ (3− sin t)~k

and similarly, along C2 we get
~r2
′(t) = − sin t~ı+ cos t~− cos t~k

and

~V (~r2(t)) =
−(sin t)√

(cos t)2 + (sin t)2
~ı+

cos t√
(cos t)2 + (sin t)2

~+
(
(cos t)2 + (sin t)2

)(
− (3 + sin t)

)
~k

= − sin t~ı+ cos t~− (3 + sin t)~k.
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Hence the line integral along the upper ellipse C1 is∮
C1

~V · d~r =
∫ 2π

0

~V (~r1(t)) · ~r1 ′(t) dt

=

∫ 2π

0

(sin t~ı+ cos t~+ (3− sin t)~k) · (− sin t~ı− cos t~− cos t~k) dt

=

∫ 2π

0

(− sin2 t− cos2 t− 3 cos t+ sin t cos t) dt

=

∫ 2π

0

(−1− 3 cos t+ sin t cos t) dt

whereas along the lower ellipse C2 we get∮
C2

~V · d~r =
∫ 2π

0

~V (~r2(t)) · ~r2 ′(t) dt

=

∫ 2π

0

(− sin t~ı+ cos t~− (3 + sin t)~k) · (− sin t~ı+ cos t~− cos t~k) dt

=

∫ 2π

0

(sin2 t+ cos2 t+ 3 cos t+ sin t cos t) dt

=

∫ 2π

0

(1 + 3 cos t+ sin t cos t) dt

When we add these two integrals the first two terms cancel leaving us with∫
∂S

~V · d~r =
∫ 2π

0

2 sin t cos t dt =
[
sin2 t

]2π
t=0

= sin2 2π − sin2 0 = 0− 0 = 0.

Thus we see that the circulation of ~V along the boundary of S is zero.
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c) Let us first compute the curl of ~V :

curl ~V = ∇× ~V =

∣∣∣∣∣∣∣∣∣∣∣∣

~ı ~ ~k

∂

∂x

∂

∂y

∂

∂z
−y√
x2 + y2

x√
x2 + y2

(x2 + y2) z

∣∣∣∣∣∣∣∣∣∣∣∣
=

[
∂

∂y

(
(x2 + y2) z

)
− ∂

∂z

(
x√

x2 + y2

)]
~ı

+

[
∂

∂z

(
−y√
x2 + y2

)
− ∂

∂x

(
(x2 + y2) z

)]
~

+

[
∂

∂x

(
x√

x2 + y2

)
− ∂

∂y

(
−y√
x2 + y2

)]
~k

= [(2yz)− (0)] ~ı+ [(0)− (2xz)] ~

+

[√
x2 + y2 − x1

2
(x2 + y2)−1/2(2x)

x2 + y2
−
−
√
x2 + y2 + y 1

2
(x2 + y2)−1/2(2y)

x2 + y2

]
~k

=2yz~ı− 2xz ~+
1√

x2 + y2
~k.

The surface S is a piece of a cylinder so let us parameterize it in cylindrical coordinates using the vector
function

~r(θ, z) = cos θ~ı+ sin θ ~+ z ~k, 0 ≤ θ ≤ 2π, −3− sin θ ≤ z ≤ 3 + sin θ

remember that we have −y− 3 ≤ z ≤ y+3 and y = sin θ on S hence the bounds for z. The derivatives
of ~r(θ, z) with respect to θ and z are

~rθ = − sin θ~ı+ cos θ ~, ~rz = ~k

and therefore we have

~rθ × ~rz = (− sin θ~ı+ cos θ ~)× ~k = − sin θ (~ı× ~k) + cos θ (~× ~k) = − sin θ (−~) + cos θ~ı

that is
~rθ × ~rz = cos θ~ı+ sin θ ~.

The vector field curl ~V takes the following values on S:

curl ~V (~r(θ, z)) = 2z sin θ~ı− 2z cos θ ~+
1√

cos2 θ + sin2 θ
~k = 2z sin θ~ı− 2z cos θ ~+ ~k.
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So the flux of curl ~V across S is∫∫
S

curl ~V · d~S =

∫ 2π

0

∫ 3+sin θ

−3−sin θ
curl ~V (~r(θ, z)) · (~rθ × ~rz) dz dθ

=

∫ 2π

0

∫ 3+sin θ

−3−sin θ
(2z sin θ~ı− 2z cos θ ~+ ~k) · (cos θ~ı+ sin θ ~) dz dθ

=

∫ 2π

0

∫ 3+sin θ

−3−sin θ
2z(sin θ cos θ − cos θ sin θ) dz dθ

=

∫ 2π

0

∫ 3+sin θ

−3−sin θ
0 dz dθ = 0.

Thus we see that the flux of curl ~V across S is zero.

4) Consider the vector field
~F (x, y, z) = xz~ı+ yz ~+ z2 ~k

over the solid region E = {(x, y, z) ∈ R3 | x2 + y2 + z2 ≤ 4, z ≥
√
x2 + y2} and its outward-oriented

boundary surface ∂E.

2 a) Describe and sketch the region E and the surface ∂E (draw orientation).

Verify the Divergence Theorem by

12 b) computing the flux of ~F across ∂E, that is
∫∫

∂E
~F · d~S and

8 c) evaluating the triple integral of div ~F over E, i.e.
∫∫∫

E
div ~F dV.

Solution. a)The inequality x2+ y2+ z2 ≤ 4 gives us the ball of radius 2 centred at the origin. The other
inequality z ≥

√
x2 + y2 yields a region above the circular cone whose axis is the positive z-axis with its

apex at the origin and an apex angle of π/2. The solid region E is the intersection of the two regions,
i.e. the piece of the ball that is above the cone (see Figure 2). Accordingly, the boundary of E is the
union of a piece of sphere and a piece of cone. More precisely, let S1 denote of the portion of the sphere
of radius 2 centred at the origin for which we have the polar angle 0 ≤ φ ≤ π/4. And let S2 denote the
piece of cone such that x2 + y2 + z2 ≤ 4. In summary, we have ∂E = S1 ∪ S2.

x

y

z

E

Figure 2: The solid region E (with outward-pointing normal vectors).

b) From part a), we deduce that S1 is given by the vector function

S1 : ~r1(φ, θ) = 2 sinφ cos θ~ı+ 2 sinφ sin θ ~+ 2 cosφ~k, 0 ≤ φ ≤ π/4, 0 ≤ θ ≤ 2π.
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and the surface S2 is given by the vector function

S2 : ~r2(θ, z) = z cos θ~ı+ z sin θ ~+ z ~k, 0 ≤ θ ≤ 2π, 0 ≤ z ≤
√
2.

Note that the upper boundary for z was obtained by finding where the two surfaces x2 + y2 + z2 = 4 and
z =

√
x2 + y2 intersect. There we have both equations satisfied, hence

4 = (x2 + y2) + z2 = (
√
x2 + y2)2 + z2 = (z)2 + z2 = 2z2 ⇒ z2 = 2,

which implies z =
√
2 since z is non-negative on the cone. The flux of ~F across ∂E = S1 ∪ S2 is the

sum of the surface integrals of ~F across S1 and S2:∫∫
∂E

~F · d~S =

∫∫
S1

~F · d~S +

∫∫
S2

~F · d~S.

To evaluate these surface integrals, we need to find (outward) normal vectors to the surfaces as well as

the values of ~F on the surfaces. On S1, we have

(~r1)φ = 2 cosφ cos θ~ı+ 2 cosφ sin θ ~− 2 sinφ~k

and
(~r1)θ = −2 sinφ sin θ~ı+ 2 sinφ cos θ ~.

The cross product of these derivatives yields normal vectors to S1:

(~r1)φ × (~r1)θ =(2 cosφ cos θ~ı+ 2 cosφ sin θ ~− 2 sinφ~k)× (−2 sinφ sin θ~ı+ 2 sinφ cos θ ~)

=(2 cosφ cos θ)(2 sinφ cos θ)(~i×~j)− (2 cosφ sin θ)(2 sinφ sin θ)(~×~ı)
+ (2 sinφ)(2 sinφ sin θ)(~k ×~ı)− (2 sinφ)(2 sinφ cos θ)(~k × ~)

=(4 sinφ cosφ cos2 θ)(~k)− (4 sinφ cosφ sin2 θ)(−~k)
+ (4 sin2 φ sin θ)(~)− (4 sin2 φ cos θ)(−~ı)

=4 sin2 φ cos θ~ı+ 4 sin2 φ sin θ ~+ 4 sinφ cosφ(cos2 θ + sin2 θ)~k

=4 sin2 φ cos θ~ı+ 4 sin2 φ sin θ ~+ 4 sinφ cosφ~k.

As for the values of ~F on S1, we get

~F (~r1(φ, θ)) = 4 sinφ cosφ cos θ~ı+ 4 sinφ cosφ sin θ ~+ 4 cos2 φ~k.

Hence the normal component of ~F is

~F (~r1(φ, θ)) ·
(
(~r1)φ × (~r1)θ

)
= (4 sinφ cosφ cos θ)(4 sin2 φ cos θ) + (4 sinφ cosφ sin θ)(4 sin2 φ sin θ) + (4 cos2 φ)(4 sinφ cosφ)

= 16 sin3 φ cosφ(cos2 θ + sin2 θ) + 16 cos3 φ sinφ

= 16 sin3 φ cosφ+ 16 cos3 φ sinφ.
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The flux of ~F across S1 is∫∫
S1

~F · d~S =

∫ 2π

0

∫ π/4

0

~F (~r1(φ, θ)) · ((~r1)φ × (~r1)θ) dφ dθ

=

∫ 2π

0

∫ π/4

0

(16 sin3 φ cosφ+ 16 cos3 φ sinφ) dφ dθ

=

∫ 2π

0

dθ

∫ π/4

0

(16 sin3 φ cosφ+ 16 cos3 φ sinφ) dφ

= [θ]θ=2π
θ=0

[
4 sin4 φ− 4 cos4 φ

]φ=π/4
φ=0

= (2π)
(
4 sin4 π

4
− 4 cos4

π

4
− 4 sin4 0 + 4 cos4 0

)
= (2π)

(
4

1
√
2
4 − 4

1
√
2
4 − 0 + 4

)
= (2π)(4) = 8π.

On S2, we have the derivatives

(~r2)θ = −z sin θ~ı+ z cos θ ~, (~r2)z = cos θ~ı+ sin θ ~+ ~k

and so we get the outward normal vectors

(~r2)θ × (~r2)z = (−z sin θ~ı+ z cos θ ~)× (cos θ~ı+ sin θ ~+ ~k)

= (−z sin2 θ)(~ı× ~)− z sin θ(~ı× ~k) + (z cos2 θ)(~×~ı) + z cos θ(~× ~k)
= (−z sin2 θ)(~k)− z sin θ(−~) + (z cos2 θ)(−~k) + z cos θ(~ı)

= z cos θ~ı+ z sin θ ~− z(sin2 θ + cos2 θ)~k

= z cos θ~ı+ z sin θ ~− z ~k.

The vector field ~F takes the following values on S2:

~F (~r2(θ, z)) = z2 cos θ~ı+ z2 sin θ ~+ z2 ~k.

Its normal component is

~F (~r2(θ, z)) ·
(
(~r2)θ × (~r2)z

)
= (z2 cos θ)(z cos θ) + (z2 sin θ)(z sin θ) + (z2)(−z)
= z3(cos2 θ + sin2 θ − 1) = 0

and hence the flux of ~F across S2 is zero∫∫
S2

~F · d~S =

∫ √2
0

∫ 2π

0

~F (~r2(θ, z)) · ((~r2)θ × (~r2)z) dθ dz =

∫ √2
0

∫ 2π

0

0 dθ dz = 0.

Therefore the total flux of ~F across ∂E is 8π.
c) The divergence of ~F is

div ~F = ∇ · ~F =
∂

∂x
(xz) +

∂

∂y
(yz) +

∂

∂z
(z2) = z + z + 2z = 4z.

The solid E can be expressed in terms of spherical coordinates as follows

E : 0 ≤ ρ ≤ 2, 0 ≤ φ ≤ π

4
, 0 ≤ θ ≤ 2π.

Page 10 of 11



Therefore the triple integral of div ~F over E is∫∫∫
E

div ~F dV =

∫∫∫
E

4z dV =

∫ 2

0

∫ π/4

0

∫ 2π

0

(4ρ cosφ)(ρ2 sinφ) dθ dφ dρ

=

∫ 2

0

4ρ3 dρ

∫ π/4

0

sinφ cosφ dφ

∫ 2π

0

dθ =
[
ρ4
]ρ=2

ρ=0

[
sin2 φ

2

]φ=π/4
φ=0

[θ]θ=2π
θ=0

= (24)

(
sin2 π

4

2
− sin2 0

2

)
(2π) = 16

( 1√
2
2

2

)
(2π) = 16

(
1

4

)
(2π) = 8π.
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