Calculus 2

Final Exam - Solutions
Exam Date: April 11, 2022 (16:00-18:00)

1) Consider the hyperboloid of one sheet H given by the equation

$$
x^{2}+\frac{y^{2}}{9}-\frac{z^{2}}{4}=2
$$

8 a) Treating H as a level surface of a function of three variables, find an equation of the tangent plane to H at the point $P(3,9,8)$.

8 b) Use the Implicit Function Theorem to show that near the point P in part a), H can be considered to be the graph of a function f of x and z. Compute the partial derivatives f_{x} and f_{z} and show that the tangent plane found in a) coincides with the graph of the linearization $L(x, z)$ of $f(x, z)$ at $(3,8)$.

8 c) Use the method of Lagrange multipliers to find the point $Q\left(x_{*}, y_{*}, z_{*}\right)$ on the tangent plane in part a) that is closest to the origin. Determine the distance of between the tangent plane and the origin.

Solution. a) The hyperboloid H can be viewed as a level surface for the function $F(x, y, z)=x^{2}+\frac{y^{2}}{9}-\frac{z^{2}}{4}$. To obtain a normal vector to the tangent plane we may use the fact that the gradient vector is perpendicular to level surfaces. The gradient vector of $F(x, y, z)$ is

$$
\nabla F(x, y, z)=F_{x} \vec{\imath}+F_{y} \vec{\jmath}+F_{z} \vec{k}=2 x \vec{\imath}+\frac{2}{9} y \vec{\jmath}-\frac{1}{2} z \vec{k}
$$

which at the point $(3,9,8)$ becomes

$$
\vec{n}=\nabla F(3,9,8)=2(3) \vec{\imath}+\frac{2}{9}(9) \vec{\jmath}-\frac{1}{2}(8) \vec{k}=6 \vec{\imath}+2 \vec{\jmath}-4 \vec{k} .
$$

For any point $Q(x, y, z)$ in the tangent plane, the vector $\overrightarrow{P Q}=(x-3) \vec{\imath}+(y-9) \vec{\jmath}+(z-8) \vec{k}$ lies in the plane and as such it is perpendicular to \vec{n}, i.e. we have

$$
\vec{n} \cdot \overrightarrow{P Q}=0 \quad \Leftrightarrow \quad 6(x-3)+2(y-9)-4(z-8)=0 \quad \Leftrightarrow \quad 6 x+2 y-4 z-4=0 .
$$

Therefore $3 x+y-2 z-2=0$ is an equation for the tangent plane to H at $(3,9,8)$.
b) Since $F(x, y, z)$ is a polynomial function of x, y, z, its partial derivatives are continuous. Furthermore, we have $F(3,9,8)=2$ and $F_{y}(3,9,8)=\left.\frac{2}{9} y\right|_{y=9}=2 \neq 0$. By the Implicit Function Theorem, there is a neighbourhood of $(3,9,8)$ in which a unique function $y=f(x, z)$ is defined and satisfies $F(x, f(x, z), z)=2$. The partial derivatives of f are found via implicit differentiation

$$
f_{x}=-\frac{F_{x}}{F_{y}}=-\frac{2 x}{\frac{2}{9} y}=-\frac{9 x}{y}, \quad f_{z}=-\frac{F_{z}}{F_{y}}=-\frac{-\frac{1}{2} z}{\frac{2}{9} y}=\frac{9 z}{4 y}
$$

taking the following values at $(3,9,8)$:

$$
f_{x}(3,8)=-\frac{9(3)}{9}=-3, \quad f_{z}(3,8)=\frac{9(8)}{4(9)}=2 .
$$

Hence the linearization of $y=f(x, z)$ at $(3,8)$ is

$$
\begin{aligned}
L(x, z) & =f_{x}(3,8)(x-3)+f_{z}(3,8)(z-8)+f(3,8) \\
& =-3(x-3)+2(z-8)+9 \\
& =-3 x+2 z+2 .
\end{aligned}
$$

The graph of the linearization is given by the equation $y=-3 x+2 z+2$ which coincides with the equation of the tangent plane found in part a).
c) To find the point $Q\left(x_{*}, y_{*}, z_{*}\right)$ is to minimize the distance from the origin which is equivalent to minimizing the function $d(x, y, z)=x^{2}+y^{2}+z^{2}$ (i.e. distance from the origin squared) subject to the constraint $g(x, y, z)=3 x+y-2 z=2$. We use the method of Lagrange multipliers and solve

$$
\left\{\begin{array} { r l }
{ \nabla d (x , y , z) } & { = \lambda \nabla g (x , y , z) } \\
{ g (x , y , z) } & { = 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
2 x=3 \lambda \\
2 y=\lambda \\
2 z=-2 \lambda \\
3 x+y-2 z=2
\end{array}\right.\right.
$$

for x, y, z, λ. From the first three equations we get $x=\frac{3}{2} \lambda, y=\frac{1}{2} \lambda, z=-\lambda$, which plugged into the last equation yields $7 \lambda=2$, hence $\lambda=\frac{2}{7}$. Therefore we find the coordinates of the point Q to be $x_{*}=\frac{3}{2}\left(\frac{2}{7}\right)=\frac{3}{7}, y_{*}=\frac{1}{2}\left(\frac{2}{7}\right)=\frac{1}{7}, z_{*}=-\frac{2}{7}$, i.e. $Q\left(x_{*}, y_{*}, z_{*}\right)=\left(\frac{3}{7}, \frac{1}{7},-\frac{2}{7}\right)$. Its distance from the origin is

$$
D=|O Q|=\sqrt{d\left(x_{*}, y_{*}, z_{*}\right)}=\frac{1}{7} \sqrt{3^{2}+1^{2}+(-2)^{2}}=\frac{\sqrt{14}}{7}=\sqrt{\frac{2}{7}} .
$$

Alternatively, this distance can be found computing the length of the projection of the vector $\overrightarrow{O P}$ to \vec{n} :

$$
D=\frac{|\vec{n} \cdot \overrightarrow{O P}|}{|\vec{n}|}=\frac{|6(3)+2(9)-4(8)|}{\sqrt{6^{2}+2^{2}+(-4)^{2}}}=\frac{4}{\sqrt{56}}=\frac{2}{\sqrt{14}}=\sqrt{\frac{2}{7}} .
$$

2) Consider the vector field

$$
\vec{G}(x, y, z)=\frac{A x}{x^{2}+y^{2}+1} \vec{\imath}+\left(\frac{2 y}{x^{2}+y^{2}+1}+B z e^{y}\right) \vec{\jmath}+e^{y} \vec{k}
$$

with parameters $A, B \in \mathbb{R}$.
9 a) Determine the values of A and B for which \vec{G} is conservative.
8 b) For A and B found in part a), determine a scalar potential for \vec{G}.
4 c) For A and B found in part a), compute the line integral of \vec{G} along the curve of intersection of the paraboloid $z=x^{2}+y^{2}$ and the plane $y=1$ from the point $P_{0}(0,1,1)$ to the point $P_{1}(1,1,2)$.

Solution. a) Since \vec{G} is defined everywhere on \mathbb{R}^{3} and has continuously differentiable components, it is
conservative if and only if $\operatorname{curl} \vec{G}=\overrightarrow{0}$. We have

$$
\begin{aligned}
\operatorname{curl} \vec{G}=\nabla \times \vec{G}= & \left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{A x}{x^{2}+y^{2}+1} & \frac{2 y}{x^{2}+y^{2}+1}+B z e^{y} & e^{y}
\end{array}\right| \\
= & {\left[\frac{\partial}{\partial y}\left(e^{y}\right)-\frac{\partial}{\partial z}\left(\frac{2 y}{x^{2}+y^{2}+1}+B z e^{y}\right)\right] \vec{\imath} } \\
& +\left[\frac{\partial}{\partial z}\left(\frac{A x}{x^{2}+y^{2}+1}\right)-\frac{\partial}{\partial x}\left(e^{y}\right)\right] \vec{\jmath} \\
& +\left[\frac{\partial}{\partial x}\left(\frac{2 y}{x^{2}+y^{2}+1}+B z e^{y}\right)-\frac{\partial}{\partial y}\left(\frac{A x}{x^{2}+y^{2}+1}\right)\right] \vec{k} \\
= & {\left[e^{y}-B e^{y}\right] \vec{\imath}+[0-0] \vec{\jmath}+\left[\frac{-4 x y}{\left(x^{2}+y^{2}+1\right)^{2}}-\frac{-2 A x y}{\left(x^{2}+y^{2}+1\right)^{2}}\right] \vec{k} } \\
= & e^{y}[1-B] \vec{\imath}+\frac{-2 x y}{\left(x^{2}+y^{2}+1\right)^{2}}[2-A] \vec{k}
\end{aligned}
$$

so curl $\vec{G}=\overrightarrow{0}$ everywhere if and only if $A=2$ and $B=1$:

$$
\vec{G}(x, y, z)=\frac{2 x}{x^{2}+y^{2}+1} \vec{\imath}+\left(\frac{2 y}{x^{2}+y^{2}+1}+z e^{y}\right) \vec{\jmath}+e^{y} \vec{k} .
$$

b) We need to solve the equation $\nabla g=\vec{G}$ with $A=2, B=1$ for g. Written in component form, it reads

$$
\begin{align*}
g_{x} & =\frac{2 x}{x^{2}+y^{2}+1} \tag{1}\\
g_{y} & =\frac{2 y}{x^{2}+y^{2}+1}+z e^{y}, \tag{2}\\
g_{z} & =e^{y} . \tag{3}
\end{align*}
$$

Integrating both sides of eq. (1) with respect to x, we obtain

$$
\begin{equation*}
g(x, y, z)=\ln \left(x^{2}+y^{2}+1\right)+h(y, z), \tag{4}
\end{equation*}
$$

where $h(y, z)$ is a constant of integration depending on y and z (but not x). Differentiating (4) with respect to y, we get

$$
\begin{equation*}
g_{y}=\frac{2 y}{x^{2}+y^{2}+1}+h_{y}(y, z) \tag{5}
\end{equation*}
$$

Comparing eqs. (2) and (5) gives

$$
\begin{equation*}
h_{y}(y, z)=z e^{y} \tag{6}
\end{equation*}
$$

which integrated with respect to y yields

$$
\begin{equation*}
h(y, z)=z e^{y}+k(z) . \tag{7}
\end{equation*}
$$

Again, we have constant of integration $k(z)$ that may depend on z (but not y). Plugging this into eq. (4) gives us

$$
\begin{equation*}
g(x, y, z)=\ln \left(x^{2}+y^{2}+1\right)+z e^{y}+k(z) . \tag{8}
\end{equation*}
$$

Differentiating (8) with respect to z and comparing the result to (3) yields

$$
\begin{equation*}
k^{\prime}(z)=0 \quad \Rightarrow \quad k(z)=K \text { (constant). } \tag{9}
\end{equation*}
$$

Therefore we find that

$$
\begin{equation*}
g(x, y, z)=\ln \left(x^{2}+y^{2}+1\right)+z e^{y}+K \tag{10}
\end{equation*}
$$

is a potential of the conservative vector field \vec{G} (with $A=2, B=1$).
c) Since \vec{G} (with $A=2, B=1$) is conservative, i.e. we have $\vec{G}(x, y, z)=\nabla g(x, y, z)$ with the potential $g(x, y, z)=\ln \left(x^{2}+y^{2}+1\right)+z e^{y}+K$ we have

$$
\int_{P_{0} \rightarrow P_{1}} \vec{G} \cdot d \vec{r}=g\left(P_{1}\right)-g\left(P_{0}\right)=g(1,1,2)-g(0,1,1)=(\ln 3+2 e)-(\ln 2+e)=e+\ln 3-\ln 2
$$

by the Fundamental Theorem of line integrals.
Alternatively, we could parametrize the curve in question by the vector function

$$
\vec{r}(x)=x \vec{\imath}+\vec{\jmath}+\left(x^{2}+1\right) \vec{k}, \quad 0 \leq x \leq 1
$$

whose derivative is

$$
\vec{r}^{\prime}(x)=\vec{\imath}+2 x \vec{k}, \quad 0 \leq x \leq 1
$$

and along which the vector fields takes the values

$$
\vec{G}(\vec{r}(x))=\frac{2 x}{x^{2}+2} \vec{\imath}+\left(\frac{2}{x^{2}+2}+\left(x^{2}+1\right) e\right) \vec{\jmath}+e \vec{k} .
$$

Hence the line integral can also be directly evaluated as follows
$\int_{P_{0} \rightarrow P_{1}} \vec{G} \cdot d \vec{r}=\int_{0}^{1} \vec{G}(\vec{r}(x)) \cdot \vec{r}^{\prime}(x) d x=\int_{0}^{1}\left(\frac{2 x}{x^{2}+2}+2 x e\right) d x=\left[\ln \left(x^{2}+2\right)+x^{2} e\right]_{x=0}^{x=1}=\ln 3+e-\ln 2$.
3) Consider a fluid with the velocity field

$$
\vec{V}(x, y, z)=\frac{-y}{\sqrt{x^{2}+y^{2}}} \vec{\imath}+\frac{x}{\sqrt{x^{2}+y^{2}}} \vec{\jmath}+\left(x^{2}+y^{2}\right) z \vec{k}
$$

and the surface $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1,-y-3 \leq z \leq y+3\right\}$ with outward normal vectors and positively-oriented boundary ∂S.

3 a) Describe and sketch the surface S and its boundary ∂S (draw orientation).
Verify Stokes' Theorem by
8 b) calculating the circulation of \vec{V} along ∂S, i.e. $\int_{\partial S} \vec{V} \cdot d \vec{r}$ and
12 c) computing the flux of $\operatorname{curl} \vec{V}$ across S, that is $\iint_{S} \operatorname{curl} \vec{V} \cdot d \vec{S}$.
Solution. a) The surface S is the part of the cylinder of radius 1 with the z-axis as axis that is above the plane $y+z+3=0$ and below the plane $y-z+3=0$. The boundary ∂S consists of the two ellipses C_{1} and C_{2} obtained by slicing the cylinder with each of the planes (see Figure 1):

$$
C_{1}=\left\{(x, y, z) \mid x^{2}+y^{2}=1, z=y+3\right\}, \quad C_{2}=\left\{(x, y, z) \mid x^{2}+y^{2}=1, z=-y-3\right\} .
$$

These ellipses can be thought of as the projection of the unit circle $x^{2}+y^{2}=1$ onto the planes $z=y+3$ and $z=-y-3$, respectively. Since the normal vectors point outward (meaning away from the z-axis), the

Figure 1: The surface S and its boundary $\partial S=C_{1} \cup C_{2}$ (with positive orientation).
boundary becomes positively-oriented if the upper ellipse C_{1} is traversed clockwise and the lower ellipse C_{2} is traversed counter-clockwise when viewed from above.
b) Based on part a), the following vector functions can be used to represent the (oriented) boundary $\partial S=C_{1} \cup C_{2}:$

$$
\begin{array}{lll}
C_{1}: & \vec{r}_{1}(t)=\cos t \vec{\imath}-\sin t \vec{\jmath}+(3-\sin t) \vec{k}, & 0 \leq t \leq 2 \pi, \\
C_{2}: & \vec{r}_{2}(t)=\cos t \vec{\imath}+\sin t \vec{\jmath}-(3+\sin t) \vec{k}, & 0 \leq t \leq 2 \pi .
\end{array}
$$

The circulation of \vec{V} along the boundary $\partial S=C_{1} \cup C_{2}$ is the sum of the line integrals of \vec{V} along the two ellipses C_{1} and C_{2} :

$$
\int_{\partial S} \vec{V} \cdot d \vec{r}=\oint_{C_{1}} \vec{V} \cdot d \vec{r}+\oint_{C_{2}} \vec{V} \cdot d \vec{r} .
$$

To compute these line integrals, we need the tangent vectors as well as the values \vec{V} takes along the curves. Along C_{1}, we obtain

$$
\vec{r}_{1}^{\prime}(t)=-\sin t \vec{\imath}-\cos t \vec{\jmath}-\cos t \vec{k}
$$

and

$$
\begin{aligned}
\vec{V}\left(\vec{r}_{1}(t)\right) & =\frac{-(-\sin t)}{\sqrt{(\cos t)^{2}+(-\sin t)^{2}}} \vec{\imath}+\frac{\cos t}{\sqrt{(\cos t)^{2}+(-\sin t)^{2}}} \vec{\jmath}+\left((\cos t)^{2}+(-\sin t)^{2}\right)(3-\sin t) \vec{k} \\
& =\sin t \vec{\imath}+\cos t \vec{\jmath}+(3-\sin t) \vec{k}
\end{aligned}
$$

and similarly, along C_{2} we get

$$
\vec{r}_{2}^{\prime}(t)=-\sin t \vec{\imath}+\cos t \vec{\jmath}-\cos t \vec{k}
$$

and

$$
\begin{aligned}
\vec{V}\left(\vec{r}_{2}(t)\right) & =\frac{-(\sin t)}{\sqrt{(\cos t)^{2}+(\sin t)^{2}}} \vec{\imath}+\frac{\cos t}{\sqrt{(\cos t)^{2}+(\sin t)^{2}}} \vec{\jmath}+\left((\cos t)^{2}+(\sin t)^{2}\right)(-(3+\sin t)) \vec{k} \\
& =-\sin t \vec{\imath}+\cos t \vec{\jmath}-(3+\sin t) \vec{k}
\end{aligned}
$$

Hence the line integral along the upper ellipse C_{1} is

$$
\begin{aligned}
\oint_{C_{1}} \vec{V} \cdot d \vec{r} & =\int_{0}^{2 \pi} \vec{V}\left(\vec{r}_{1}(t)\right) \cdot \vec{r}_{1}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}(\sin t \vec{\imath}+\cos t \vec{\jmath}+(3-\sin t) \vec{k}) \cdot(-\sin t \vec{\imath}-\cos t \vec{\jmath}-\cos t \vec{k}) d t \\
& =\int_{0}^{2 \pi}\left(-\sin ^{2} t-\cos ^{2} t-3 \cos t+\sin t \cos t\right) d t \\
& =\int_{0}^{2 \pi}(-1-3 \cos t+\sin t \cos t) d t
\end{aligned}
$$

whereas along the lower ellipse C_{2} we get

$$
\begin{aligned}
\oint_{C_{2}} \vec{V} \cdot d \vec{r} & =\int_{0}^{2 \pi} \vec{V}\left(\vec{r}_{2}(t)\right) \cdot \vec{r}_{2}^{\prime}(t) d t \\
& =\int_{0}^{2 \pi}(-\sin t \vec{\imath}+\cos t \vec{\jmath}-(3+\sin t) \vec{k}) \cdot(-\sin t \vec{\imath}+\cos t \vec{\jmath}-\cos t \vec{k}) d t \\
& =\int_{0}^{2 \pi}\left(\sin ^{2} t+\cos ^{2} t+3 \cos t+\sin t \cos t\right) d t \\
& =\int_{0}^{2 \pi}(1+3 \cos t+\sin t \cos t) d t
\end{aligned}
$$

When we add these two integrals the first two terms cancel leaving us with

$$
\int_{\partial S} \vec{V} \cdot d \vec{r}=\int_{0}^{2 \pi} 2 \sin t \cos t d t=\left[\sin ^{2} t\right]_{t=0}^{2 \pi}=\sin ^{2} 2 \pi-\sin ^{2} 0=0-0=0
$$

Thus we see that the circulation of \vec{V} along the boundary of S is zero.
c) Let us first compute the curl of \vec{V} :

$$
\begin{aligned}
\operatorname{curl} \vec{V}=\nabla \times \vec{V}= & \left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{-y}{\sqrt{x^{2}+y^{2}}} & \frac{x}{\sqrt{x^{2}+y^{2}}} & \left(x^{2}+y^{2}\right) z
\end{array}\right| \\
= & {\left[\frac{\partial}{\partial y}\left(\left(x^{2}+y^{2}\right) z\right)-\frac{\partial}{\partial z}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)\right] \vec{\imath} } \\
& +\left[\frac{\partial}{\partial z}\left(\frac{-y}{\sqrt{x^{2}+y^{2}}}\right)-\frac{\partial}{\partial x}\left(\left(x^{2}+y^{2}\right) z\right)\right] \vec{\jmath} \\
& +\left[\frac{\partial}{\partial x}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)-\frac{\partial}{\partial y}\left(\frac{-y}{\sqrt{x^{2}+y^{2}}}\right)\right] \vec{k} \\
= & {[(2 y z)-(0)] \vec{\imath}+[(0)-(2 x z)] \vec{\jmath} } \\
& +\left[\frac{\sqrt{x^{2}+y^{2}}-x \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}(2 x)}{x^{2}+y^{2}}-\frac{-\sqrt{x^{2}+y^{2}}+y \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}(2 y)}{x^{2}+y^{2}}\right] \vec{k} \\
= & 2 y z \vec{\imath}-2 x z \vec{\jmath}+\frac{1}{\sqrt{x^{2}+y^{2}}} \vec{k} .
\end{aligned}
$$

The surface S is a piece of a cylinder so let us parameterize it in cylindrical coordinates using the vector function

$$
\vec{r}(\theta, z)=\cos \theta \vec{\imath}+\sin \theta \vec{\jmath}+z \vec{k}, \quad 0 \leq \theta \leq 2 \pi,-3-\sin \theta \leq z \leq 3+\sin \theta
$$

remember that we have $-y-3 \leq z \leq y+3$ and $y=\sin \theta$ on S hence the bounds for z. The derivatives of $\vec{r}(\theta, z)$ with respect to θ and z are

$$
\vec{r}_{\theta}=-\sin \theta \vec{\imath}+\cos \theta \vec{\jmath}, \quad \vec{r}_{z}=\vec{k}
$$

and therefore we have

$$
\vec{r}_{\theta} \times \vec{r}_{z}=(-\sin \theta \vec{\imath}+\cos \theta \vec{\jmath}) \times \vec{k}=-\sin \theta(\vec{\imath} \times \vec{k})+\cos \theta(\vec{\jmath} \times \vec{k})=-\sin \theta(-\vec{\jmath})+\cos \theta \vec{\imath}
$$

that is

$$
\vec{r}_{\theta} \times \vec{r}_{z}=\cos \theta \vec{\imath}+\sin \theta \vec{\jmath} .
$$

The vector field curl \vec{V} takes the following values on S :

$$
\operatorname{curl} \vec{V}(\vec{r}(\theta, z))=2 z \sin \theta \vec{\imath}-2 z \cos \theta \vec{\jmath}+\frac{1}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}} \vec{k}=2 z \sin \theta \vec{\imath}-2 z \cos \theta \vec{\jmath}+\vec{k} .
$$

So the flux of curl \vec{V} across S is

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \vec{V} \cdot d \vec{S} & =\int_{0}^{2 \pi} \int_{-3-\sin \theta}^{3+\sin \theta} \operatorname{curl} \vec{V}(\vec{r}(\theta, z)) \cdot\left(\vec{r}_{\theta} \times \vec{r}_{z}\right) d z d \theta \\
& =\int_{0}^{2 \pi} \int_{-3-\sin \theta}^{3+\sin \theta}(2 z \sin \theta \vec{\imath}-2 z \cos \theta \vec{\jmath}+\vec{k}) \cdot(\cos \theta \vec{\imath}+\sin \theta \vec{\jmath}) d z d \theta \\
& =\int_{0}^{2 \pi} \int_{-3-\sin \theta}^{3+\sin \theta} 2 z(\sin \theta \cos \theta-\cos \theta \sin \theta) d z d \theta \\
& =\int_{0}^{2 \pi} \int_{-3-\sin \theta}^{3+\sin \theta} 0 d z d \theta=0 .
\end{aligned}
$$

Thus we see that the flux of $\operatorname{curl} \vec{V}$ across S is zero.
4) Consider the vector field

$$
\vec{F}(x, y, z)=x z \vec{\imath}+y z \vec{\jmath}+z^{2} \vec{k}
$$

over the solid region $E=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2} \leq 4, z \geq \sqrt{x^{2}+y^{2}}\right\}$ and its outward-oriented boundary surface ∂E.
(2) a) Describe and sketch the region E and the surface ∂E (draw orientation).

Verify the Divergence Theorem by
12 b) computing the flux of \vec{F} across ∂E, that is $\iint_{\partial E} \vec{F} \cdot d \vec{S}$ and
8 c) evaluating the triple integral of $\operatorname{div} \vec{F}$ over E, i.e. $\iiint_{E} \operatorname{div} \vec{F} d V$.
Solution. a)The inequality $x^{2}+y^{2}+z^{2} \leq 4$ gives us the ball of radius 2 centred at the origin. The other inequality $z \geq \sqrt{x^{2}+y^{2}}$ yields a region above the circular cone whose axis is the positive z-axis with its apex at the origin and an apex angle of $\pi / 2$. The solid region E is the intersection of the two regions, i.e. the piece of the ball that is above the cone (see Figure 2). Accordingly, the boundary of E is the union of a piece of sphere and a piece of cone. More precisely, let S_{1} denote of the portion of the sphere of radius 2 centred at the origin for which we have the polar angle $0 \leq \phi \leq \pi / 4$. And let S_{2} denote the piece of cone such that $x^{2}+y^{2}+z^{2} \leq 4$. In summary, we have $\partial E=S_{1} \cup S_{2}$.

Figure 2: The solid region E (with outward-pointing normal vectors).
b) From part a), we deduce that S_{1} is given by the vector function

$$
S_{1}: \quad \vec{r}_{1}(\phi, \theta)=2 \sin \phi \cos \theta \vec{\imath}+2 \sin \phi \sin \theta \vec{\jmath}+2 \cos \phi \vec{k}, \quad 0 \leq \phi \leq \pi / 4,0 \leq \theta \leq 2 \pi .
$$

and the surface S_{2} is given by the vector function

$$
S_{2}: \quad \vec{r}_{2}(\theta, z)=z \cos \theta \vec{\imath}+z \sin \theta \vec{\jmath}+z \vec{k}, \quad 0 \leq \theta \leq 2 \pi, 0 \leq z \leq \sqrt{2} .
$$

Note that the upper boundary for z was obtained by finding where the two surfaces $x^{2}+y^{2}+z^{2}=4$ and $z=\sqrt{x^{2}+y^{2}}$ intersect. There we have both equations satisfied, hence

$$
4=\left(x^{2}+y^{2}\right)+z^{2}=\left(\sqrt{x^{2}+y^{2}}\right)^{2}+z^{2}=(z)^{2}+z^{2}=2 z^{2} \quad \Rightarrow \quad z^{2}=2
$$

which implies $z=\sqrt{2}$ since z is non-negative on the cone. The flux of \vec{F} across $\partial E=S_{1} \cup S_{2}$ is the sum of the surface integrals of \vec{F} across S_{1} and S_{2} :

$$
\iint_{\partial E} \vec{F} \cdot d \vec{S}=\iint_{S_{1}} \vec{F} \cdot d \vec{S}+\iint_{S_{2}} \vec{F} \cdot d \vec{S} .
$$

To evaluate these surface integrals, we need to find (outward) normal vectors to the surfaces as well as the values of \vec{F} on the surfaces. On S_{1}, we have

$$
\left(\vec{r}_{1}\right)_{\phi}=2 \cos \phi \cos \theta \vec{\imath}+2 \cos \phi \sin \theta \vec{\jmath}-2 \sin \phi \vec{k}
$$

and

$$
\left(\vec{r}_{1}\right)_{\theta}=-2 \sin \phi \sin \theta \vec{\imath}+2 \sin \phi \cos \theta \vec{\jmath} .
$$

The cross product of these derivatives yields normal vectors to S_{1} :

$$
\begin{aligned}
\left(\vec{r}_{1}\right)_{\phi} \times\left(\vec{r}_{1}\right)_{\theta}= & (2 \cos \phi \cos \theta \vec{\imath}+2 \cos \phi \sin \theta \vec{\jmath}-2 \sin \phi \vec{k}) \times(-2 \sin \phi \sin \theta \vec{\imath}+2 \sin \phi \cos \theta \vec{\jmath}) \\
= & (2 \cos \phi \cos \theta)(2 \sin \phi \cos \theta)(\vec{i} \times \vec{\jmath})-(2 \cos \phi \sin \theta)(2 \sin \phi \sin \theta)(\vec{\jmath} \times \vec{\imath}) \\
& +(2 \sin \phi)(2 \sin \phi \sin \theta)(\vec{k} \times \vec{\imath})-(2 \sin \phi)(2 \sin \phi \cos \theta)(\vec{k} \times \vec{\jmath}) \\
= & \left(4 \sin \phi \cos \phi \cos ^{2} \theta\right)(\vec{k})-\left(4 \sin \phi \cos \phi \sin ^{2} \theta\right)(-\vec{k}) \\
& +\left(4 \sin ^{2} \phi \sin \theta\right)(\vec{\jmath})-\left(4 \sin ^{2} \phi \cos \theta\right)(-\vec{\imath}) \\
= & 4 \sin ^{2} \phi \cos \theta \vec{\imath}+4 \sin ^{2} \phi \sin \theta \vec{\jmath}+4 \sin \phi \cos \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \vec{k} \\
= & 4 \sin ^{2} \phi \cos \theta \vec{\imath}+4 \sin ^{2} \phi \sin \theta \vec{\jmath}+4 \sin \phi \cos \phi \vec{k} .
\end{aligned}
$$

As for the values of \vec{F} on S_{1}, we get

$$
\vec{F}\left(\vec{r}_{1}(\phi, \theta)\right)=4 \sin \phi \cos \phi \cos \theta \vec{\imath}+4 \sin \phi \cos \phi \sin \theta \vec{\jmath}+4 \cos ^{2} \phi \vec{k} .
$$

Hence the normal component of \vec{F} is

$$
\begin{aligned}
& \vec{F}\left(\vec{r}_{1}(\phi, \theta)\right) \cdot\left(\left(\vec{r}_{1}\right)_{\phi} \times\left(\vec{r}_{1}\right)_{\theta}\right) \\
& =(4 \sin \phi \cos \phi \cos \theta)\left(4 \sin ^{2} \phi \cos \theta\right)+(4 \sin \phi \cos \phi \sin \theta)\left(4 \sin ^{2} \phi \sin \theta\right)+\left(4 \cos ^{2} \phi\right)(4 \sin \phi \cos \phi) \\
& =16 \sin ^{3} \phi \cos \phi\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+16 \cos ^{3} \phi \sin \phi \\
& =16 \sin ^{3} \phi \cos \phi+16 \cos ^{3} \phi \sin \phi .
\end{aligned}
$$

The flux of \vec{F} across S_{1} is

$$
\begin{aligned}
\iint_{S_{1}} \vec{F} \cdot d \vec{S} & =\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \vec{F}\left(\vec{r}_{1}(\phi, \theta)\right) \cdot\left(\left(\vec{r}_{1}\right)_{\phi} \times\left(\vec{r}_{1}\right)_{\theta}\right) d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 4}\left(16 \sin ^{3} \phi \cos \phi+16 \cos ^{3} \phi \sin \phi\right) d \phi d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 4}\left(16 \sin ^{3} \phi \cos \phi+16 \cos ^{3} \phi \sin \phi\right) d \phi \\
& =[\theta]_{\theta=0}^{\theta=2 \pi}\left[4 \sin ^{4} \phi-4 \cos ^{4} \phi\right]_{\phi=0}^{\phi=\pi / 4} \\
& =(2 \pi)\left(4 \sin ^{4} \frac{\pi}{4}-4 \cos ^{4} \frac{\pi}{4}-4 \sin ^{4} 0+4 \cos ^{4} 0\right) \\
& =(2 \pi)\left(4 \frac{1}{\sqrt{2}}-4 \frac{1}{\sqrt{2}}-0+4\right)=(2 \pi)(4)=8 \pi .
\end{aligned}
$$

On S_{2}, we have the derivatives

$$
\left(\vec{r}_{2}\right)_{\theta}=-z \sin \theta \vec{\imath}+z \cos \theta \vec{\jmath}, \quad\left(\vec{r}_{2}\right)_{z}=\cos \theta \vec{\imath}+\sin \theta \vec{\jmath}+\vec{k}
$$

and so we get the outward normal vectors

$$
\begin{aligned}
\left(\vec{r}_{2}\right)_{\theta} \times\left(\vec{r}_{2}\right)_{z} & =(-z \sin \theta \vec{\imath}+z \cos \theta \vec{\jmath}) \times(\cos \theta \vec{\imath}+\sin \theta \vec{\jmath}+\vec{k}) \\
& =\left(-z \sin ^{2} \theta\right)(\vec{\imath} \times \vec{\jmath})-z \sin \theta(\vec{\imath} \times \vec{k})+\left(z \cos ^{2} \theta\right)(\vec{\jmath} \times \vec{\imath})+z \cos \theta(\vec{\jmath} \times \vec{k}) \\
& =\left(-z \sin ^{2} \theta\right)(\vec{k})-z \sin \theta(-\vec{\jmath})+\left(z \cos ^{2} \theta\right)(-\vec{k})+z \cos \theta(\vec{\imath}) \\
& =z \cos \theta \vec{\imath}+z \sin \theta \vec{\jmath}-z\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \vec{k} \\
& =z \cos \theta \vec{\imath}+z \sin \theta \vec{\jmath}-z \vec{k} .
\end{aligned}
$$

The vector field \vec{F} takes the following values on S_{2} :

$$
\vec{F}\left(\vec{r}_{2}(\theta, z)\right)=z^{2} \cos \theta \vec{\imath}+z^{2} \sin \theta \vec{\jmath}+z^{2} \vec{k} .
$$

Its normal component is

$$
\begin{aligned}
\vec{F}\left(\vec{r}_{2}(\theta, z)\right) \cdot\left(\left(\vec{r}_{2}\right)_{\theta} \times\left(\vec{r}_{2}\right)_{z}\right) & =\left(z^{2} \cos \theta\right)(z \cos \theta)+\left(z^{2} \sin \theta\right)(z \sin \theta)+\left(z^{2}\right)(-z) \\
& =z^{3}\left(\cos ^{2} \theta+\sin ^{2} \theta-1\right)=0
\end{aligned}
$$

and hence the flux of \vec{F} across S_{2} is zero

$$
\iint_{S_{2}} \vec{F} \cdot d \vec{S}=\int_{0}^{\sqrt{2}} \int_{0}^{2 \pi} \vec{F}\left(\vec{r}_{2}(\theta, z)\right) \cdot\left(\left(\vec{r}_{2}\right)_{\theta} \times\left(\vec{r}_{2}\right)_{z}\right) d \theta d z=\int_{0}^{\sqrt{2}} \int_{0}^{2 \pi} 0 d \theta d z=0
$$

Therefore the total flux of \vec{F} across ∂E is 8π.
c) The divergence of \vec{F} is

$$
\operatorname{div} \vec{F}=\nabla \cdot \vec{F}=\frac{\partial}{\partial x}(x z)+\frac{\partial}{\partial y}(y z)+\frac{\partial}{\partial z}\left(z^{2}\right)=z+z+2 z=4 z .
$$

The solid E can be expressed in terms of spherical coordinates as follows

$$
E: \quad 0 \leq \rho \leq 2, \quad 0 \leq \phi \leq \frac{\pi}{4}, \quad 0 \leq \theta \leq 2 \pi
$$

Therefore the triple integral of $\operatorname{div} \vec{F}$ over E is

$$
\begin{aligned}
\iiint_{E} \operatorname{div} \vec{F} d V & =\iiint_{E} 4 z d V=\int_{0}^{2} \int_{0}^{\pi / 4} \int_{0}^{2 \pi}(4 \rho \cos \phi)\left(\rho^{2} \sin \phi\right) d \theta d \phi d \rho \\
& =\int_{0}^{2} 4 \rho^{3} d \rho \int_{0}^{\pi / 4} \sin \phi \cos \phi d \phi \int_{0}^{2 \pi} d \theta=\left[\rho^{4}\right]_{\rho=0}^{\rho=2}\left[\frac{\sin ^{2} \phi}{2}\right]_{\phi=0}^{\phi=\pi / 4}[\theta]_{\theta=0}^{\theta=2 \pi} \\
& =\left(2^{4}\right)\left(\frac{\sin ^{2} \frac{\pi}{4}}{2}-\frac{\sin ^{2} 0}{2}\right)(2 \pi)=16\left(\frac{\frac{1}{\sqrt{2}^{2}}}{2}\right)(2 \pi)=16\left(\frac{1}{4}\right)(2 \pi)=8 \pi .
\end{aligned}
$$

